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BASIC PRINCIPLES OF RADIAL CHROMATOGRAPHY

V. V. RACHINSKII
Timivyazev Academy of Agriculture, Moscow A-8 (U.S.5.R.)

SUMMARY

The equations of dynamic sorption are considered in the case of radial cylindrical
symmetry. The basic quantitative regularities of radial chromatography are deduced

from these equations.

- In the case of radlal-cylmdmcal dynamlc sorptlon there is an additional factor
of front deformation, namely the dependence of flow rates.on radius. ~

The effect of this factor is considered in the cases of different shapes of sorption
isotherms for frontal and elution chromatography.

It is. shown that reproducible migration coefficients of ‘the chromatograplnc
zones Rp in radial chromatography, as in linear chromatography, can be obtained only
in the case of linear sorption isotherms of the substances.

Radial chromatography is one of the most effective rapld methods of separation
and analysis of complicated mixtures of substances?.

The theory of this modification of chromatography, however, has not been
sufficiently developed.

If we consider the essential pr1nc1p1es and specific pecullarltles of radial chro-
matography in the light of general theory of dynamic sorption and chromatography?,
from the physica.l point of view, radial chromatography is based on a process of dynamic
sorption in the cylindrical field of the mobile phase migration rates (radial-cylindrical
dynamic sorption).

We shall commence with the theoretical con51derat10n of the given problem by
presenting the general equations.

Let us assume that dynamic sorptxon of any substance takes place in a complex
field of migration rates in three dimensions. In this case the full equation of mass
equilibrium in the-process of isothermal dynamic sorption will read as follows?:

+ > + div (mc) = D Au : (1)

where » and N are the Volume concentrations of the substance to be sorbed in the
liquid (or gaseous) phase and in the sorbent respectively, expressed as the mass of the
substance per unit volume occupied by the sorption medium, ¢ = time, 7% = the vector
of the rate of migration of the substance through the sorbing medium, D* = effective
coefficient allowing for the supplementary longitudinal (diffusional and quasi-dif-
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fusional) effects of transport (isotropic character of this coefficient is assumed) div =
the divergence operator, and 4 = the Laplace operator.

- In accordance with the rules known for the transformation of the Cartesmn
coordinates into cyhndmcal ones in vector calculation, the equilibrium equatlon of
dynamic sor ptlon in cyhndrlcal coordinates i is expressed as:
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If in the cylindrical field of flow
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eqn. (2) becomes simplified as follows:
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‘ If the longitudinal effects are neglected (D* = 0), the equation is still further
simplified to: : :

on | ON 1 O ' | ’ .
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An equation is now derived for a change of radial flow ratein a cyhndncal field.
We assume a cylindrical sorbent block (sorber) and introduction of the solution of
the substance undergoing sorption at a constant rate of :

dv/dt = (V = volume of the solution)

from the axis z, the height of the sorber being Zo and its radius Q being of infinite length
The flow rate at a distance g from the axis will then be:

ue = V/2mo 2ok = Ko . _ (s

where K = V/27m 2g¢ = const., and « = porosity, z.e. the decrease in radial flow is
inversely proportional to the distance from the axis.
If the flow takes place in the opposite direction, ¢.e. towards the axis, then

ue = — Klo ‘ Co , (6)

If the last term of the left hand side of eqn. (4) is developed and the expression
for (5) or (6) is used, ‘
~ on | ON on - | | |
,—&——{—————{—u&,—b———o . . | | - ‘ 5 (7)
is obtained, where #y = 4~ K/g (the rate is p051t1ve for ﬁltratlon from the axis and
_negatlve for filtration towards the axis). S - : :
- Let us now con51der frontal equlhbnum dynan‘nc sorptlon for ﬁltratlon from the _
axis. - R ‘

L3
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236 V. V. RACHINSKII
The equation of the sorption isotherm in its general form is:
= f (n) - (8)

In this case eqns. (7) and (8) will describe radial-cylindrical equilibrium sorption
dynamics of one component Assuming that the initial condition of the problem of
frontal dynamic sorption is given by an initial continuous distribution (which may
be differentiated)

n = ¢ (), and then the problem of Cauchy can be formulated.

Let us first find the general integral of the system of eqns. (7) and (8).

By eliminating the variable IV from these equations we obtain

on on

o T Ume g = O (9)
where ,
o Ug . K (10)

mET x4+ ') T elx +1'(0)]°

f’ (») is a derivation of the isotherm (8) according to concentration.
The characteristic equation for (g9) will be as follows:

_(i.é_ E— dg ‘ (II)
I Un,o0 .

which implies that v, = dg/d#, the migration rate of a given concentration point of

the dynamic sorption front.
Formula (10) can be considered to be the expression of Wicke’s law concerning

radial-cylindrical sorption dynamics. But, in contrast to the expression of Wicke’s
law concerning linear dynamic sorption, the migration rate of a given concentration
point in radial-cylindrical dynamic sorption is not a constant value and depends on
the coordinate g; it decreases with an increasing ¢. From (11) taking mto account (10)

we obtam _
odo — T-T-fi”m‘ dt=0  (12)
The integral of this equation will be:
E = 02 — Aut, ‘ (13)
where o
An = 2K/[[1 + f'(n)]
Then the general solution of eqn. (xx) will be as follows:
n= (£ =& (o — ) - (14)

where @ (§) stands for any arbltrary function of the integral. (13). As can be easﬂy
verified, it satisfies eqn. (x1). |
.Let.us proceed to the solution of Cauchy s problem :
If ¢ = o, the characteristic integral (13) is £ = % and, since the 1n1t1a1 cond1t10n
isn =g (9)orn.=¢ (\/5) and the solution of the problem of Cauchy can be expressed

as follows:

)
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n =@ (Ve* — Int), S s
from which it follows that , . , .

w~m=@wR o ~ (16)
or | |

where 8o = @ (1) stands for the initial coordinate of a glven concentration point of the
front of the initial distribution.
If gy — 0, then

= Vi, | | | (19
In this way, eqn. (17) appears to be the solution of Cauchy s problem sought for.
It permits the calculation of the coordma.te g for a given concentration #z at
any time.

Let us now analyse the effect of chke s law (see eqn. (Io)) on the course of defor-
mation of the dynamic sorption front with respect to the shape of the sorption isotherm.

FRONTAL DYNAMIC SORPTION

Let us consider the course of deformation of the front in the case of the three
kinds of sorption isotherm, v¢z. convex, concave and linear.

On application of Wicke’s law (1o) to radlal—cyhndrlcal dynamic sorption, the
migration rate of the concentration points of the front depends not only on the con-
centration » but also on the coordinate g, z.e. there are two factors which influence
the migration rate of the front-——namely the sorption isotherm (8) and the flow rate (5).

In the convex isotherm, the sorption isotherm is a factor which narrows the
diffuse front (the points of lower concentration moving more slowly than those of
higher concentration). The flow-rate factor (which is inversely proportional to @) will
appear to slow down the migration rate of all points along the front. But in a diffuse
front, the concentration points more remote from the axis will show, at any given
moment, a lower speed than those situated closer to the axis. Consequently, the
flow-rate factor will ‘also appear to narrow the dynamlc sorption front. Hence, with
a convex isotherm, gradual narrowing of the diffuse front must occur. Since the factors’
which cause diffusion act continuously under actual conditions, stabilization of the
dynamic sorption front must occur at some asymptotic stage of dynamic sorption.
Since in radlal—cylmdrlcal sorption dynamics with a convex isotherm, two factors
narrowing the front are in action, the stabilization of the front will take its course more
effectively and the width of the stationary front will be less (1f the other conditions are
identical), than in the sorption dynamlcs in columns.

Linearity in a sorption isotherm is a factor which conserves the dlffuseness of
the front. For this reason only one factor narrowing the. front will ex1st in the case of
a linear sorption isotherm—namely the flow rate. Thus, in this case too, formation of
a stable front should be expected in the asymptotic stage of the process.

- A concave sorption isotherm is a factor causing progressive diffuseness of the
front The flow rate, which is a factor narrowing the front, cannot prevent this. Thus,

e.g., in I\eepmg with (z8), the diffuseness of the front will be proportional to 4/¢. This’
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238 V. V. RACHINSKII
diffusion of the front, however, is less pronounced than in column chromatography
where the diffusion in the case of a concave isotherm is proportional to #2. In this way
radial-cylindrical dynarmc sorption is thus, a more effectlve technical procedure than

the dynamic sorption in columns.
Let us now consideraspecialidealised, but very important, caseof frontal sorption

dynamics, in which only one single concentration point #, (concentration of the entering
solution) exists at the entrance to the cylindrical sorber, Z.e. at the axis, while the
corresponding concentration in the sorbent Ny = f (%) (instantaneous equilibrium)
and no disturbing factors (kinetic or quasidiffusional) are present. - ‘
In this case the dynamic sorption is described by a special solution of eqn. (9):
n = const. This solution is interpreted as conservation of the constancy of the con-
centration 74 and IV, in the process of dynamic sorption. This must result in the for-

mation and migration of a stabilized discontinuous dynamic sorption front.
For the calculation of the flow rate of such a stabilized discontinuous front the

following equilibrium equation of the substance undergoing sorption is used:

nguedt - 27020k == (g + No)vedt - 2702k, (x9)
in which v, stands for the sought-for migration rate of the stationary front.
From eqn. (19) we obtain

7)*___cl_g__“_ ne . K h (20)
T At Y m+ N, o I+ n’ 20

where % = #o/N,, 2.e. the partition ratio.
- Eqn. (20) may be considered as an expression of Wilson’s law for the radial-

cylindrical dynamic sorption.
‘As shown by eqn. (20) the flow rate of the stabilized front is not a constant; it

depends on the coordinate g.
On mtegratmg eqn. (20) we obtain:

2Kh :
= I/I +k (21).

F rom eqn. (5) the formula for the movement of the front ot the solvent may be
obtamed as follows:

dor _ K , 22)
d  or (
from which » ‘
or = V2Kt - (23)

5 obtained by integration.
Let us introduce the index Rp = g/or which is well known in radial chromato-

gfaphy I‘rom eqns (02) and (23) we then obtain:

By comparlson we note that in lmear chromatography, accordmg to Wilson’s law
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h
I - h
If the process of dynamic sorption takes place on paper or thm layers (sheet chromato-
graphy), it may be convenient to express the formula (21) as follows:

- 2nKh , ‘
P-—— I—{—ht . \ . : (26)

where P = mp? = the area taken up by the zone of the substance to be sorbed on the
sheet, 7.e. the area of the zone increases proportionally with time. :

Rp = (25)

ELUTION SORPTION DYNAMICS

Let us consider an ideal case: At the entrance to the cylindrical sorber an initial
“rectangular’’ zone with aradius gyis formed and pure solvent is introduced at the
entrance (from the axis). Let us assume that the initial zone contains the same solvent
as that which is used for elution. Let us also suppose that dynamic sorption occurs
under equilibrium conditions and that no other factors of frontal diffusion will operate.
In this case both the fore and rear front of the zone must retain their discontinuous
character during the process of elution. In keeping with Wilson’s law (20), the fore
front will migrate at a rate of v; and the rear front at a rate of v, and v, << v,, because
the coordinate of the rear front g, is smaller than the coordinate of the fore front g,.
Thus the width of the zone is bound to decrease during the elution process.

The integration of eqn. (20) within the limits g, to 91—z e. the migration of the
fore front for a perlod t—gives: ‘ : .

-Kh - o A

o1 = V-u 'l" o . B (27)

Similarly, the mlgratlon of the rear front of the zone for the same period will be
2Kh

VL

From eqns. (27) and (28) we obtain the dependence on time of the zone width during
elution, as follows: _

' B {1/ 2K~ 2Kh |
69:91{*’29_:90-/(‘/124_}& FVI—I—/*L) ’ (29)

.' Qo K 2Kht/(1 + k)

then

If

@—QUZVL+ﬂ R B | R S ,,wy)
z.e. 1f the ‘time per:od is sufﬁc1ent1y large the decrease in the width of the zone is

inversely proportional to 4/t. If ¢ > o0, we obtain dg — o. The decrease in the width of
the zone represents the equilibrium effect and the area of the zone remains constant
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during elution. In fact, the area of the ring with the radius g,, according to eqn. (27),

will be as follows:
2nKh : o
PI—PO+—+kt v ‘ (31)

where P, = mg,?, ¢.e. the area of the initial zone. The area of the ring w1th the radius 0z
will be according to eqn. (28)

2 Kh . ; | : . |
Pg = —I—?F—}-’" ¢ (32)

In accordance with eqns. (31) and (32), the area of the zone in the process of elution
P — Py = Py = 70y = const | (33)

In cases where factors Wthh cause frontal dlffusmn operate during the process of the
elution, the deformation of the fronts will depend, according to Wicke’s law (10), on
the shape of the sorption isotherm and the field of the flow rate. In the case of a convex
sorption isotherm, the fore front of the zone will narrow under the influence of the
convexity factor of the isotherm. This narrowing will become even more pronounced
due to the influence of the flow rate of the mobile phase. In this way, in the presence

‘of a convex sorption isotherm, the formation of a stabilized front can be expected at .
a certain stage of the elution type sorption dynamics. In the case of the rear front, the
convex1ty factor of the sorption isotherm acts so as to broaden the front: This broaden-
ing, however, is partly compensated by the counteractmg influence of the flow rate.

- For this reason the width of the rear front will not increase proportionally with time ¢,
as it will in the case of linear sorption dynamics, but 1n proportlon to 4/¢, as follows
from eqn. (18). :
~In this way, the effect of “tailing” in elution type sorption clynan‘ucs in the
presence of a convex sorptlon isotherm also occurs in radial-cylindrical sorption
dynamics. Tailing, however, is less pronounced than in the case of linear sorption
dynamics.

‘ In the case of a concave sorption isotherm the picture of elution dynamlc
sorptlon while the factors of diffusion of the fronts operate, will be opposite to that
which'is encountered in the convex sorption isotherm. “Beards’ will also form on the
fore front as is the case in linear dynamic sorption. The width of the “beard” will
increase in proportion to 4/, but not however, to ¢, as would happen in linear sorption
dynamlcs The rear front in the case of a concave sorption isotherm must become stable.

'Linearity of the sorption isotherm is a factor which conserves diffuseness. For
this reason, in the case of a linear sorption isotherm when kinetic and quasi-diffusional
factors operate, the only factor which counteracts diffuseness will be that of the flow-
rate gradient. But-even in this case, the degree of diffuseness of the fronts of the zones
must ‘be less than in the case of linear dynamic sorptlon As a consequence of the

‘shortening of the plateau range of the original zone, in a certain stage of the elution type
sorption dynamics, a “band” of the substance to be sorbed will be- present in the cy- g
11ndr1cal sorber, the maxnnum of wh1ch w111 have to mlgrate at a rate of

FERR ,;.’K h e )
Yo Wmax="— I-—{—h o
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Distribution of the substance in the band requires special calculatlon The
mlgratmn of such a band can also be charactenzed by the coefﬁment

R = emxler = Vil = 7).

It is of note that radlal—cylmdrmal dynamic sorption (radlal chromatography)
resembles, in a certainsense, the so-called gradient dynamlcsorptlon in chromatography.
The gradient factor in radlal—cylmdrlcal sorption dynamics is a hyperbolic field
(o = K/g) of the flow rate in the cylindrical sorber.

The gradient factor of the cylindrical velocity field actsas a factor whlch narrows
the zone of the substance undergomg elution.

Neither in convex nor in concave isotherms, however, does the gradient cylin-
drical field of the flow rates of the mobile phase (as well as in the case of sorption
dynamics in columns) fully preclude the influence of factors which cause diffuseness of
the fronts. Sincein the case of the convex and concave isotherm, the peak concentration
after the disappearance of the plateau range will gradually change, the partition ratio 4
of the maximum of the elution band will also change. Only after the peak concentration
has dropped to such low values as to cause the sorption isotherm to become linear,
does the part1t10n ratio # become stabilized. Under this condltlon the mlgratlon rate
of the maximum will be defined by the constant coefficient Rp = +/. RI(T 4 R).

Reproducible 'ngratwn coefficients of the chromatographic zones (Rp) in radial
chromatography, as in linear chromatography, can only be obtamed 'bf tke sorptwn zso-
therms of the substances are linear.
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DISCUSSION

Hais: The rélationship between the “linear’” Ry value and the “radial” RF
value (Rpg)

Rp = Rpg*

which has been derived by R. J. LE STRANGI: and R H. MULLER (Anal Chem 26
(1954) 953), has been verified experimentally for paper chromatography by N. C.
GANGULI (Anal. Chim. Acta, 12 (1955) 335). If somebody wants to do this for thin
layers, he can begin with Dr. WOLLENWEBER's strips and. disks exhibited upstairs.
As far as I.can judge from a first glance, they seem to bear out this relationship. In
~ comparing linear and radial chromatography, Prof. RACHINSKII drew our attention
primarily to the zone-sharpening effect of the gradient of mobile-phase flow-rate. This
sharpening is convincingly represented in Dr.’ WOLLENWEBER s exhibits. There are

further differences, especially those due to the geometry of the space ‘into * which
~ evaporation occurs (if it does occur), which seem less amenable to theoretical trea.tment
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