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SUMMARY 

The equations of dynamic sorption are considered in the case of radial cylindrical 
symmetry. The basic quantitative regularities of radial chromatography are deduced 
from these equations. . 

In the case of radial-cylindrical dynamic sorption there is an additional factor 
of front deformation, namely the dependence of flow rates .on radius. 

The effect of this factor is considered in the cases of different shapes of sorption 
isotherms for frontal and elution chromatography. ., 

It is shown that reproducible migration coefficients of the chromatographic 
zones Rp in radial chromatography, asin linear chromatography, can be obtained only 
in the case of linear sorption isotherms of the substances. 

Radial chromatography is one of the most effective rapid methods of separation 
and analysis of complicated mixtures of substancesf. 

The theory of this modification of chromatography, however, has not been 
sufficiently developed. 

If we consider the essential principles and specific peculiarities of radial chro- 
matography in the light of general theory of dynamic sorption and chromatography”, 
from the physical point of view, radial chromatography is based on a process of dynamic 
sorption in the cylindrical field of the mobile phase migration rates (radial-cylindrical 
dynamic sorption). 

We shall commence with the theoretical consideration of the given problem by 
presenting the general equations. 

Let us assume that dynamic sorption of any substance takes place in a complex 
field of migration rates in three dimensions. In this case the full equation of mass 
equilibrium in the process of isothermal dynamic sorption will read as follows2: 

6n 6N -x+x- + div (~2) = D*Az (1) 

where n and N are the volume concentrations of the substance to be sorbed in the 
liquid (or gaseous) phase and in the sorbent respectively, expressed as the mass of the 
substance per unit volume occupied by the sorption medium, t = time,% = the vector 
of.the rate of migration of the substance through the sorbing medium, D* = effective 
coefficient allowing for the supplementary longitudinal (diffusional and quasi-dif- 
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fusional) effects of transport (isotropic character of this coefficient is assumed), div = 
the divergence operator, and d = the Laplace operator. 

In accordance with the rules known for the transformation of the Cart’esian 
cbordinates into cylindrical ones in vector calculation, the equilibrium equation of 
dynamic sorption in cylindrical coordinates is expressed as: . 

If in the cylindrical field of flow 

(ZbQ # 0, Zbg, = 0, zfq = 0, - 812 = 0 - 8n ’ = drp 62 
0) 

eqn. (2) becomes simplified as follows: 

(3) 

If the longitudinal effects are neglected (D* = o), the equation is still further 
sinlplified to : 

-& (@“Z.“&J) = 0 (4) 

An equation is now derived for a change of radial flow rate in a cylindrical.field. 
We assume a cylindrical sorbent block (sorber), and introduction of the solution of 
the substance undergoing sorption,& a constant rate of 

dV/dC = 17 (V = volume of the ‘solution) 

from the axis x, the height of the sorber being z,, and its radius e being of infinite length. 
The flow rate at a distance Q from the axis will then be: 

where K = V/~TE 2,~ = COllSt., and K = porosity, i.e. the decrease in radial flow is 
inversely proportional to the distance from the axis. 

If the flow takes place in the opposite direction, i.e. towards the axis, then 

Z‘e = - A’/@ (6) 
If the last term of the left hand side of eqn. (4) is developed and the expression 

for (5) or (6) is used, 

6n 6N I% 
~$.~+%5n=o (7) 

is obtained, where ZL@ = =t: K/Q (the rate is positive for filtration from the axis and 
negative for. filtration towards the axis). 

Let us now consider frontal equilibrium dynamic sorption for filtration ‘from the 
axis. , ‘., ‘. 

, 
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The equation of the sorption isotherm in its general form is : 
N = f (9t) (S) 

In this case eqns. (7) and (S) will describe radial-cylindrical equilibrium sorption 
dynamics of one component. Assuming that the initial condition of the problem of 
frontal dynamic sorption is given by an initial continuous distribution (which may 
be differentiated) 

n = cp (e), and then the problem of Cauchy can be formulated. 
Let us first find the general integral of the system of eqns. (7) and (S). 
By eliminating the variable N from these equations we obtain 

an 
6E + V?b,@ g = 0 

where 

%? I< 
Vn,f! = 

1 + f’(@ = @[I + f’(fl)] ’ 
f’ (FZ) is a derivation of the isotherm (8) 
The characteristic equation for (9) will 

dC dq 
-=- 

I %w 

(9) 

(10) 

according to concentration. 
be as follows: 

(11) 

which implies that v,,~ = de/d& the migration rate of a given concentration point of 
the dynamic sorption front. 

Formula (IO) can be considered to be the expression of Wicke’s law concerning 
radial-cylindrical sorption dynamics. But, in contrast to the expression of Wicke’s 
law concerning linear dynamic sorption, the migration rate of a given concentration 
point in radial-cylindrical dynamic sorption is not a constant value and depends on 
the coordinate ,CJ ; it decreases with an increasing Q . From (II) taking into account (IO) 
we obtain : 

0 (12) ede - I’ dt’ 
r+f’(72) = 

The integral of this equation will be: 

5 = @2 - A& 

where 

&t = 2K/[I + f’(H)] 

(13) 

Then the general solution of eqn. (II) will be as follows: 

9% = @ (E) = @ (a” - A&) (14) 

where @ (e) stands for any arbitrary function of the integral., (13). As can be easily 
verified, it satisfies eqn. (II). 

: Let .us proceed to, the solution of Cauchy!s problem. 1 
Ift = o, the characteristic integral (13) is S = gZ and, since the initial condition 

isrt = 9 (8) or fi := cp, (dE>, and the solution of-the problem of Cauchy. can be expressed 
as follows : 

c 
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9% = ‘p Me” - &zt> > 

from which it follows that 

(15) 

@” - ant = [cp (rt)]“, (16) 

or 

Q= de”2 + &&t, (17) 
where ,oo = Cp (n) stands for the initial coordinate of a given concentration point of the 
front of the initial distribution. 

If e. --+ 0, then 

“@ = v’n,,t. (18) 

In this way, eqn. (17) appears to be the solution of Cauchy’s problem sought for. 
It permits the calculation of the coordinate e for a given concentration n at 

any time. 
Let us now analyse the effect of Wicke’s’law (see eqn. (IO)) on the course of defor- 

mation of the dynamic sorption front with respect to the shape of the sorption isotherm. 

FRONTAL DYNAMIC SORPTION 

Let us consider the course of deformation of the front in the case of the three 
kinds of sorption isotherm, viz. convex, concave and linear. 

On application of Wicke’s law (ro) to radial-cylindrical dynamic sorption, the 
migration rate of the concentration points of the front depends not only on the con- 
centration n but also on the coordinate ,Q, i.e. there are two factors which influence 
the migration rate of the front- namely the sorption isotherm (8) and.the flow rate (5). 

In the convex .isotherm, the sorption isotherm is a factor which narrows the 
diffuse front (the points of lower concentration moving more ‘slowly than those of 
higher concentration). The flow-rate factor (which is inversely proportional to Q) will 
appear to slow down the migration rate of all points along the front. But in a diffuse 
front, the concentration points more remote from the axis will show, at any given 
moment, a lower speed than those situated closer to the axis. Consequently, the 
flow-rate factor will also appear to narrow’ the dynamic’ sorption, front: Hence, with 
a convex isotherm, gradual narrowing of the diffuse front must occur. Since the factors’ 
which cause diffusion act continuously under actual conditions, stabilization of the 
dynamic sorption front must occur at some asymptotic stage of dynamic sorption. 
Since in radial-cylindrical sorption dynamics with a convex isotherm, two factors 
narrowing the front are in action, the stabilization of the front will take its course more 
effectively and the width of the stationary front will be less (if the other conditions are 
identical), than in the sorption dynamics in columns. 

Linearity in a sorption isotherm is a factor which conserves the diffuseness of 
th front: For this reason only one factor narrowing the. front will exist in the case, of 
a linear sorption isotherm- namely the flow rate. Thus; in this case too, formation of 
a stable front should be expected in the asymptotic stage of the process. 

A conqave sorption isotherm is a factor causing progressive ‘diffuseness of the 
front. The flow rate, which is a factor narrowing the front, cannot prevent this. .Thus, 
e.g., in.keeping,with (18), the diffuseness of thexfront will be,proportional to l/t. This’ 
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diffusion of the front, however, is less pronounced than in column chromatography 
where the diffusion in the case of a concave isotherm is proportional to tz. In this way 
radial-cylindrical dynamic sorption is thus, a more effective technical procedure than 
the dynamic sorption in columns. 

Let us now consider a special idealised, but very important, case of frontal sorption 
dynamics, in which only one single concentration point +zO (concentration of the entering 
solution) exists at the entrance to the cylindrical sorber, i.e. at the axis, while the 
corresponding concentration in the sorbent N, = f (+,) (instantaneous equilibrium) 
and no disturbing factors (kinetic or quasidiffusional) are present. 

In this case the dynamic sorption is described by a special solution of eqn. (9) : 

?Z = const. This solution is interpreted as conservation of the constancy of the con- 
centration qzO and ATo in the process of dynamic sorption. This must result in the for- 
mation and migration of a stabilized discontinuous dynamic sorption front. 

For the calculation of the flow rate of such a stabilized discontinuous front the 
following equilibrium equation of the substance undergoing sorption is used: 

q,u,dt l 2ZQZ,K = (9~~ + N,)v,dt - 2n~x,tc, 

in which vg stands for the sought-for migration rate of the stationary front. 
From eqn. (19) we obtain 

(19) 

(20) 

where h = st,/N,, i.e. the partition ratio. 
Eqn: (20) may be considered as an expression of Wilson’s law for the radial- 

cylindrical dynamic sorption. 
‘. As shown by eqn. (20) the flow rate of the stabilized front is not a constant; it 

depends on the coordinate e, 
On integrating eqn. (20) we obtain: 

2 Kh 
,o= - 1. 

1th. (21) 

From eqn. (5) the formula for the movement of the front of the solvent may be’ 
obtained‘ as follows : 

from which 
-- 

Q1" = dzh'c (23) 

is obtained by integration. 
.Let us introduce the indes RF = Q/Q~ which is well known in radial chromato- 

gr$hy. From eqns. (22) and (23) we then obtain: 
..: ,. 

11 h’ 
Rr;l = (24) ,,,I 

By comparison we note that in linear chromatography, according to Wilson’s law 
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(25) 

If the process of dynamic sorption takes place on paper or thin layers (sheet chromato- 
graphy), it may be convenient to express the formula (21) as follows: 

P 
2nKh 

t 
= 1+h. 

(26) 

where P = are2 = the area taken up by the zone of the substance to be sorbed on the 
sheet, i.e. the area of the zone increases proportionally with time. 

ELUTION SORPTION DYNAMICS 

Let us consider an ideal case: At the entrance to the cylindrical sorber an initial 
“rectangular” zone with a radius@,, is formed and pure solvent is introduced at the 
entrance (from the axis). Let us assume that the initial zone contains the same solvent 
as that which ,is used for elution. Let us also suppose that dynamic sorption occurs 
under equilibrium conditions and that no other factors of frontal diffusion will operate, 
In this case both the fore and rear front of. the .zone must retain their discontinuous 
character during the process of elution. In keeping with Wilson’s law (zo), the fore 
front will migrate at a rate of v1 and the rear front at a rate of vg and vu1 < vg, ,beciuse 
the coordinate of ‘the rear front el is smaller than the coordinate of the fore front e8. 
Thus the width of the zone is bound to decrease during the,elution process. 

The integration of eqn. (20) within the limits Q,, to Q,--i.e. the migration of the 
fore front for a period t-gives: 

2Kh 
2+- 

Ifd 
(27) 

Similarly; the migration of the rear front of the zone for the same period will be 

,Oz.= (28) 

From eqns. (27) and (28) we obtain the dependence on time of the zone width during 
elution, as follows : 

de = !$I1 - Qn (29) 

If ’ I 

@o < zKht/(x + h) 

then 

.6g = @3/Z ” (34 

i.e. if the -tin& period is sufficiently large, the decrease in the width of the zone is 
inversely proportional to 2/t. If t + 00, we obtain 6q + o. The decrease in the width of 
the zone represents the equilibrium effect and the area of the zone remains ‘constant 
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during elution. In fact, the area of the ring with the radius el, according to eqn. (27), 
will be as follows: 

PI 
z?cIl% 

=P”+-- 
I+k 

t (31) 

where P, = neOC, i.e. the area of the initial zone. The area of the ring with the radius ez 
will be, according to eqn. (28) : 

P,= 
23cKh 

I + h 
t (32) 

In accordance with eqns. (31) and (32), the area of the zone in the process ,of elution 

P, - P, = P, = rceoa = const. (33) 

In cases where factors which cause frontal diffusion operate during the process of the 
elution, the deformation of the fronts ,will depend, according to Wicke’s law (IO), on 
the shape of the sorption isotherm and the field of the flow rate. In the case of a convex 
sorption isotherm, the fore front of the zone will narrow under the influence of the 
convexity factor of the isotherm. This narrowing will become even more pronounced 
due to the influence of the flow rate of the mobile phase. In this way, in the presence 
of a convex sorption isotherm, the formation of a stabilized front can be expected at 
a certain stage of the elution type sorption dynamics. In the case of the rear front, the 
convexity factor of the sorption isotherm acts so as to broaden the front. This broaden- 
ing, ‘however, is partly compensated by the counteracting influence of the flow rate. 
For this reason the width of the rear front will not increase proportionally with time t, 
as it will in the case of linear sorption dynamics, but in proportion to l/t, as follows 
from eqn. (18). 

In this way, the effect of “tailing” in elution type sorption dynamics in the 
presence of a convex sorption isotherm. &o occurs in radial-cylindrical sorption 
dynamics. Tailing, however, is less pronounced than in the case of linear sorption 
dynamics. 

In the case of a concave sorption isotherm the picture of elution dynamic 
sorption, while the factors of diffusion of the fronts operate, will be opposite to that 
which is encountered in‘ the convex sorption isotherm. “Beards” will also form on the 
fore front as is the case in linear dynamic sorption. The width of the “beard” will 
increase in proportion to l/C, but not however, to C, as would happen in linear sorption 
dynamics. The rear front in the case of a concave sorption isotherm must become stable. 

Linearity of the sorption isotherm is a factor which conserves diffuseness. For 
this reason, in the case of a linear sorption isotherm when kinetic and quasi-diffusional 
factors ‘operate, the only factor which counteracts diffuseness will be that of the flow- 
rate gradient. But seven in this case, the degree of diffuseness of the fronts of the zones 
must :be less than in the case of linear dynamic sorption. As a consequence of the 
shortening of the plateau range of the original zone, in’s certain stage:of the elution,type 
sorption dynamics, a “band” of the substance to be sorbed ‘will be-present in ‘the’ cy- 
lindrical sorber, t,he maximum ,of which will have to migrate at a rate of 

,a .:,: :,’ .’ .’ ‘.. .., ,’ 



BASIC PRINCIPLES OF RADIAL CHROMATOGRAPHY 24= 

Distribution of the substance in the band requires special calculation. The 
migration of such a band can also be characterized by the coefficient 

Rp = &nax/@~ = l/h/(1 -j- h). 

It is of note that radial-cylindrical dynamic sorption (radial chromatography) 
resembles, in a certain sense, the so-calledgradient dynamic sorption in chromatography. 
The gradient factor in radial-cylindrical sorption dynamics is a hyperbblic field 

(% = K/e) of the flow rate in the cylindrical sorber. 
The gradient factor of the cylindrical velocity field acts as a factor which narrows 

the zone of the substance undergoing elution. 
Neither in convex nor in concave isotherms, however, does the gradient cylin- 

drical field of the flow rates of the mobile phase (as well as in the case of sorption 
dynamics in coluinns) fully preclude the influence of factors which cause diffuseness of 
the fronts. Since in the case of the convex and concave isotherm, the peak concentration 
after the disappearance of the plateau range will gradually change, the partition r&o k 
of tlie maximum of the elution band will also change. Only after the peak concentration 
has dropped to such low values as to cause the sorption isotherm to become linear, 
does the partitioln ratio F, become stabilized. Under thiscondition, the migra’tion rate 
‘of the maximum will be defined by the constant coefficient Rp’= d&/(1’+ h). .” 

Re$roducible migration coeficients of the ckromatogr~~kic zones (R&l in radial 
chromntography, as irt l&ear chromatogra@y, can ody be obtaisted, if the sor$tion iso- 
thermos of the substances are linear. ‘. 
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DISCUSSION 

HAIS: The relationship between the “linear” Rp value and the “radial” Rp 
value (Ra) 

which has been derived by R. J. LE STRANGE and R. H. MULLER (AnaZ. Chew., 26 
(1954) 953)) has been verified experimentally for paper chromatography by N., C. 
GANGULI (Anal. Cl&n. Acta, 12 (1955) 335). .If somebody wants to do this for thin 
layers, he can begin ,with Dr. WOLLENWEBER’S strips and.disks exhibited upstairs. 
As.far as I.,‘can judge from a first glance, they seem to ,bear out this relafionship. In 
comparing liqear ,and radial. chrom&ography, Prof. RACHINSICII drew our att.ention 
primarily to the zone-sharpening effect of the gradient of mobile-pl?ase flow-rate.. This 
sharpening is, convincingly represented in Dr. WOLLENWEBER’S exhibits. There are 
further differences, Bspeci&lly those due to the’ gebmeirl of tlie space into ‘: which 
evaporation occurs (if it does occur), which seem less amenable to theoretical treatnient. 
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